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Conditions are investigated for the coincidence of the programmed maximin and the 

value of a positional differential game /l-5/. In connection with this the infin- 

itesimal form of the stability property, derived in /6/, is used. It is shown that 

under the fulfillment of the well-known regularity conditions /3-55/ the programnled 

mwimin function is directionally differentiable and the stability property holds 

for it. The paper's main results are the necessary and sufficient condition for 

the coincidence of the programmed maximin and the positional differential game's 

value when the controlled system's right-hand side is differentiable with respect 

to the phase variable, and a sufficient regularity condition when the controlled 

system's right-hand side satisfies a Lipschitz condition in the phase variable. 

These conditions generalize the previously known /3- 5/ regularity conditions. The 

paper abuts the investigations in /l-10/. 

1. Let the motion of a controlled system be described by the equation 

Here 0 is a fixed instant of time, P,and Q are compacta, / is a continuous function satisfy- 

ing the inequality indicated, where II . II is the Euclidean norm, x is a constant. The payoff 

is specified by the continuous function a=o(t@))(z(.) is the system's realized motion). We 

assumeOat first that the controlled system satisfies the following conditions. 

R*,‘p,Q. 
The derivatives 8fi18sj (i,j = 2. 2,. ., u) exist and are continuous on (-m,O) x 

2O. The equality (the prime denotes transposition) 

is valid. 

According to the formalization from /3/, the positional strategies of the first (payoff 

minimizing) player and the second (payoff maximizing) player are identified with functions 
defined on the position space (- 03,0)X R” and taking values in compacta I'and Q, respectively. 

For any initial position (t *, zr*) this game has a saddle point and the value c' (L,, se). The func- 
tion c(t, z)-+c"(t, I) is called the differential game's potential. As was shown in /6/, for a 
function c(t,s) satisfying a Lipschitz condition to be the differential game's potential, it 

is necessary and sufficient that it satisfy the boundary condition c (0,~) = o(t) and that the 

inequalities 

SUP inf 
&Q heF(t.x.u, 

a_c(t,s)/d(l, h) <U 

inf sup 
UEP hEF(t.r, u) 

a+c(t,z)/a(l,h) ;: 0 

F (t, 2, u) = co {f (t, 5, u, 4 : v E Q} 
F (t, z, u) = co (f (h 5, u, u) : u E p) 

(1.2) 

be fulfilled for all (t,z)~=(- 00, 0) X K". 

wer and upper derivatives of function 
Here 8-c (t, ~)/a (1, h) and >+c (t,z)ia (1, h) are the lo- 

c(t, x) in the direction (1, h). If the function c(t, J) 
has a derivative in the direction (1, h) at the point (t, z) E(- 00, 0) X Rn , then 

a_~ (t, z)ia (I, h) = a,c p, ~)/a (I. h) = ac (t, z)/a (I, h) 
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We introduce into consideration the programmed maximin quantity 

u (a) : (- 03, 81 H P, v (.) : (- 00, 01 - Q 

where u and V are sets of all measurable functions (programmed controls), z (., t,. J*, u(.j, 
u (*)) = (x(t), t, < t Gee) is the solution of Eq.Cl.1) with u C- u (L), t'= u (t), satisfying the con- 
dition I (t,) = z*. It is known /3/ that the programmed maximin and the value are related by 

c*(t*,s*)<cc"(t,,2*), V@*,Z*)E (- -,ej 'J P !L.31 

The next statement's validity can also be shown. 

Statement. Let the function c (t, z) satisfy the Lipschitz condition, the boundary con- 

dition c(O,t) =(J (5) and the first inequality in (1.2) for all (t,x) F=(- m,8) ?( R" and Let 
U, be a strategy extremal to the set 

W(u) = ((t, z) Cz It,. Al x R" : c (t, I) < c (1,. x,,} 
Then the inequality 

CJ (5 Ial) -< c (1*, I*) 

is fulfilled for any motion 5 II. t,, z*, t’,l generated by strategy U, from the position (f+. J*). 
Hence it follows that the quantity c(f,, z*) is related to the game's value P(f,,r*) by 

the inequality 

c (t*, J*) : co (t*, 2,) (1.4) 

Having taken the programmed maximin function c* (I. z)as c (t, z) and used inequalities (1.3) and 

(l-4), we arrive at the next assertion. 

Lemma 1.1. For the programmed maximin to coincide everywhere with the game's value,it 

is necessary and sufficient that the function c*(t, X) satisfy the first inequality in (1.2) 

for all (t,z)E(-- m.O) X R". 
We remark that when the well-known regulaxity conditions are fulfilled, the function 

c*(t, x) proves to be differentiable in any direction (1, It). 
We first look at the linear case. Let 

j (t. 3. U. L:) I= A (t)z + B (t)u + C (t) cl 

where A (i),B (t) and C (1)are cor.tinuous matrix-valued functions of appropriate dimensions. 

Here the sets P and Q are assumed to be convex compacta, The payoff function n : fin- R is 

convex and satisfies the Lipschitz condition 

1 0 (z(2)) - (5 (XN) 1 < h 11 Jo - s(l) jj ll.5) 

(k = const, z(i) E R”, i = 1, 2) 

From convex analysis /11/ it is known that the function u can be taken as 

(J (z) = max Il'z - O*(l)1 
IEL 

(1.G) 

O* (I) ==: sup [l'r - o @)I, L = (1 E Rn : (J* (1) < m} 
xERn 

Here o* is a convex function conjugate to a, defined by the equality indicated. Set Z, is 

bounded on the strength of (1.5). Using (1.61, the Cauchy formula for solving the Linear 

equation, and a mj.ninmx theorem /12/ for the function c* (t, X), we can obtain the expression 

C* (1.5) =max 
(1.7) 

IEL 

where cf, (t,~) is the fundamental matrix of solutions of the homogeneous equation 

5’ = A (t) 5, fI (t, I) z= min [Z'@ (f3, 1) B (t) 211 
UEP 

r2 (t, 1) I mar: [I' @ (e, 1) C (t) vl 
ZEQ 

By virtue of the theorem on the directional differentiability of the maximum function /U/, 

it follows from (1.7) that the function c* (t.~) has a derivative in any direction (i,h),which 

is expressed by the formula 

ac* (1, z) PI= 
a(l,h) 

max [1'@(0, t)h - p,(t, I) - r2(t, E) - Z'@ (e,r) A (t) s] 
1EC&,X) 
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where Loft, x) is the set of vectors from L, on which the maximum in 11.7) is reached. There- 

fore, by Lenma 1.1, for the value to coincide everywhere with the programmed nlaximin, it is 

necessary and sufficient that the inequality 

be fulfilled, Inequality (1.8) is a well-known necessary and sufficient regularity Condition 

(see /4/1. Here it has been obtained by computing the directional derivative of the program- 

med maxim&n function. 
Let us now Consider the nonlinear case, We assume the fulfillment of the following con- 

ditions. 
P, The function a :Rn +-+ R 
4*. 

is continuously differentiable. 

The sets 

are nonempty for any (t,, z*)~(- x), 81x P and v(.)E V. 
5O. For any (5** x*f E (- m, 8) X Ix* and u(e) E b'* (l,,x,f the set Cin(t*,xe., uf.)') Consists 

of a single element. 

ant (1*, sy, IJ I.). ZJ (-)f ES (- 00% 6) X Rnu U x V. Consider the nation .-C 0) = I (b, f,, z*% 

u(.), u I.)) (L* < t 4 Ff). By L(t) we denate the derivative (the Jacobi matrix) af,‘dx computed at 

point (t, .r (t), u (1), u (t)). We determine the solution s(a) = (s (t), t, < t < 6) of the adjaint system 

d @) =i: - L' (lf s(t), satisfying the condition s (8) - & (1: @))/a~. The value of function sf.) at 

point t = b, is denoted fft,, z+, rtf-), nf-)f. h7e note that a unique vector s&7 r*, K f*)_ Y(')l 
corresp5nds to the coU.ection (r,, z*? u (+)_ Df-)f _ Using well-known constructions (/31,Chapter 
VI and VII) we can show that the function c*(t,rf is differentiable in any direction (1. h) 
at each point (C,,r,)E(- oo,O) x R" and that this derivative is expressed 

Here we omit the derivation of Earmula 11,3), Lemma 1.1 and formula 11.9) lead us to the 
foliowing assertion. 

Theorem 1.X. Let conditions 1o-5o be fulfilled. Then the programmed maximin function 

c*(t, z) is differentiable in any direction (1, h). Further, for the value to coincide every- 
whexe with the programmed maximin, it is necessary and sufficient that the inequality 

be fulfilled. 
The basic result contained in Theorem 1.1 was ubtained in iS/ _ A new pmof of this result 

is proposed in a forthcoming pubiicatian. 

2. Let us consider a necessary and sufficient cond&tion for the coincidence of the 
game's value and the programmed maximin when condition 5 is not fulfilled. We introducesome 
notation. Let Y and Z be metric spaces, Y,,zY, g,~cl Y, , 
Y+++S be specified. 

and the many-valued mapping P: 
Followinq i34, the s@xxl Ls,,, F(y) is used to denote the collection 

of those and only those points 
as k&m. 

Z* for which sequences y,~ Y,, zr.~~{(y,) exist such that 

Yr-+ Ye. zk+ s* It can be shown that set Ls,+P(y) is closed. 
ently we assume the fulfillment of conditions 2O- 4O. 

Here and subsequ- 

and & G (&a - t*). Assume 
Let (t*. J*) ME (- ao. 0) X R", h E IP 
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Lemma 2,1. For my (t,, q,J E (- 00, 0) X R*, h E R” 
II* (.)) EA (t*. x*, h. 6) exists such that 

and b c_ (lJ,B .- t*) a pair- ('L* 1. 1, 

c* (t* + 6, 5* J_ 6h) - c* (L*, x*) = 

,J (5 (0, t, + 6, x* + 6h, u* (.), v* (.))) - 
0 (.L. (09 t*, x*, u* (.)> v* (.))) 

I. .! . 2 i 

Proof. We find uOf.) E I', (I. -f 6, zl; + 61~) and we select a constant vector v, eQ. We set 
12, (I) = [:a, for -30 <t: f, + 6, oO (t) for t*+ 6 c t g 01. Let U; (.) c CJ, (&,I,, 1'1 (.)). It can be shown that 

(Xl(.). “I(.)) F Ai tt,, z*, h, 6). Analogously it can be shown that a pair (Us, r2(.)) te Ux v exists 
for which 

c* (t* +8, z* + Bh) -c* (I*, z*) > 5 (t (e, t, +l5. I*+NI, Ui(.), un(.))) --(Z(e,t,.I,,u,(.).ul(.))) 

Let (~1~ 0). uz (1)) = I(u~ (I), L‘, (t)l for - 00 < t <r, (14, (t), v2 (I)) for T < t g 01. Consider the function 

V(T) = c* (t, + 6, I* f ah) -c* (t*. t,) -- a (1. (0, t+ + 6. z+ = dh. ur f .). L’% (.))) + 0 lz (8, t,, I+, I+ C .), uy C-j)). 

It is continuous and satisfies the inequalities '~(t,)>O,rp(t?)<O. Consequently, there exists 

To E I&3 81 such that '~(7~) = 0, i.e., the pair (urO (.), I~,,(.)) = (u,(.), II,(.)) satisfies equality (2.2). 

Let (u (.), v (.)) E U x V and the vector s It,,r,, u(.),u(.)] be defined as in Sect.1. We set 

1,-t b 

f* It** x*. u (.I, u(.), Sl=6_' s f p*,s*, u(t), V(L)) at 

sct*,I*,h,fi)=((Slt*,+*,U(.~~,i’(.)I,f*It*,2*.1C(.),U(.).fil)~ 

(2.3) 

R”x Rn:(~(.),~(.))~A(t*,r*,h,6)] 

&(t,, xz+z, h)= Lsb-+oB(&,s,,h, 6) 

B,(t*,s*,h)#$, V(t*,.r*,h)E(--,e)R" Y R" 

Theorem 2.1. Let conditions 1o-4o be fulfilled. For the value c'(t*. z*) to coincide 

everywhere with the progranmred maximin c*(t,, x,),it is necessary and sufficient that the in- 

equality 

be fulfilled. 

sup infmins'(h-/f,)<O, V(t,,r,)E(---,O) X R" (2.4) 
k (S. 1,) 

U'E Q, h E F (t,, r*, 0). is, !*) E B, (t*, I*, h) 

Proof. Sufficiency. Suppose that inequality (2.4) is satisfied. Then for every 
v E Q and e > 0 there exist h, FE F(t,, z*, u) and (s*, i,) E R,,(t,, z*, h,) such that 

S*'@* -_f*) GE (2.5) 

By the definition of &(t,,z,,ll,) we can choose &++O, (%fk) EB(t*,r*,Il*~fik)r (Uti(.)r&~(.))E~(~*, 

x*,k*,6k) such that (sk,!k)+(s*,f*) and 
1,+6, 

s,, = s [t*, lr*, Uk(‘)vCk(‘)lr fk=&’ s f(6,c,~*,Uk(~)rvk (t))dt (2.6) 

c* (t* + 6,;, I* -L F,h,) - c* (t*. x*) & (5 (0, t, 4 fik, 

+I- fi,h:,,rr,(,),Vk(.)))-U(x(e,t*,s,, Uk(')rf'k('))) 

(2.7) 

Using variational equations, the right-hand side of (2.7) can be estimated by the quantity 

sk' (h, - fh) 6, f o (&). Because of (2.5) 

a-@(& I*) 
a(i,h,) < ~&'[c*(~* i- 6k,& + 6kh,) -cc*&, &)I< 

limSk'(ll*-_fh)=S*'(h*-_*)~E 
k-m 

Since e> 0 and v~ Q are arbitrary and h, c F(t,, x*, Y). by Lemma 1.1 the value coincidesevery- 

where with the programmed maximin. 

Necessity. By Lemma 1.1, for every v5Q and E> 0 there exist h, E F (t,, I*, u). 

fi,-++o such that 

c*(t* + &,I* + RF&*) --C*(t*,5*)<& (2.8) 

On the strength of Lemma 2.1 we can select a pair (Us, v~(.))E A(t,, I*, h,, 6,) satisfying 

(2.2). Because of (2.8) we obtain 
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IJ (5 (0, t, + Sk, ** + f&h*, ilk (.),vh. (.))) - u (5 (0, t*, **. UC(.), 4 (.)I) G E 6k 

The left-hand side of (2.8) equals s<(h+ - fk) 6!, + a(&), where sk and fk are defined by (2.6). 

Therefore 
Sk'@, - fk) 6, -< 0 (6k) + "6x 

Consequently 

min s'(h, -I*) Qe 
0. '.)EB&. X1. h.) 

and, hence, (2.4) is fulfilled. The theorem is proved. 

If condition 2' 1s not fulfilled, then the positional differential game has an equili- 

brium situation in other classes of positional strategies of both players, and a correspond- 

ing progrmed construction and a corresponding definition of programmed nlaxinlin are knownfor 
each of these types of differential games /3,8/. Using these definitions, we Can COnStrUCt 

the set BO and obtain analogs of Theorems 1.1 and 2.1. We remark as well that Theorems 1.1 

and 2.1 remain valid, with appropriate modifications, in the case the function u is not dif- 

ferentiable, but is given as 

O(Z)= min (~(z,m) 
InEN 

where Mis a compactum, the function Q, is continuous in all variables and is continuously dif- 

ferentiable in 5, as well as in the case condition 4 o is not fulfilled, 

3. We consider the case when function f satisfies condition 2O and the one following: 

6'. f (t, z, u, V) = fl (t, .r) + fz (t, u, V). (t, z: 11, u) 65 t---o0 , 01 x R” x P x Q 

11 fi (6 z@)) - fl (t, z(l)) 11 < J.(G) II .+) - dl) 11 , (t,d’))~G, @=I,?) 

where Gis any bounded region in (- co, 81 x R n, k(G) is the Lipschitz constant. Following /15/, 

we consider the many-valued mapping (t, x, P)-+ K(t, X,&J), where for any (t, 5, P) E (- co, 01 x 
R" X R” we set 

K&G/J)= b_;;v_x Iif1 (L v - b) - fl(4 Y)l 6-7 (3.1) 

We note that here, in contrast to /15/ wherein y = x in definition (3.11, we require that 

point y vary in a neighborhood of point x. 

Let x(.):[t*,81+ R” be a continuous function and pan R" . By the symbol P (L, P*, z(.)) 
we denote the collection of points p* E R” for each of which a solution p(.):[t,,el-r Rn of 

the differential inclusion 

P’ (t) E K Ct. z (4> P (4) (3.2) 

exists satisfying the conditions p(t,) = p*, p(8) = p* . We note that F (L*. I'*, 5 (.)) + 7. 
Assume that (t*, z*)=(- 0~3, 8) X R", &+ i-o,(u,(.),%(.)) E u X V and !, 5 A* havebeen chosen. 
Consider the equation 

5' (L) = fl (r, r(t)) + f? tt. 4 (0, % (0) (3.3) 

A solution of Eq.(3.3), satisfying the condition ~(1,) = .r*, is denoted 5, (t) (t* < t < '?. By 

uk (1) (t* G t G 8) we denote the solution of the same Eq.(3.3), 

6k) = 2% + Bkll f 0 (6,). Let 
satisfying the condition yk(t* f 

:* -a,; 

:_I fig1 s /(f*, 5*, Np (t), I',; (t,) c't = ir, !im zk(l)= * (t) 

vt E it*:+ 

f-r= 

81, A% (t) = Yk (t) - tk (t) 

Lemma 3.1. All partial limits of the sequence As,(f3)6,-1 are contained in set 
h - f*, x(.)). 

p (t** 
Lema 3.1 is proved on the basis of a construction in /15/. We set 

where the vector f* 

Theorem 3.1. 
tional differential 
that the inequality 

c ct*, 5*, 11, 6) = ((5 c.7 t,, -%z, u (,). v (.)I, f, It,, I*, u (.), 
u (.I, 61): (u (.), u (.)) E A (f*. z*, k 6)) 
Co (t*, x,cv 11) = a LJ~ C (t*, zr+z, h, 6) 

and the set Ahave been defined by (2.4) and (2.1). 

Let conditions 2O-4O and 6O be fulfilled. For the value of the posi- 
game to coincide everywhere with the programmed maximin, it is sufficient 
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v tt*> z*) E (- 00, 6) x R” 

v c+z 0, h fz F ct*> 51;. 4, (5 (.), f*) E c, (t*, .r*, R) 

P E fJ (f*, h - f*. .z (.)) 

be fulfilled. 

Theorem 3.1 is proved by the scheme used to prove Theorem 2.1, using Lenm~a 3.1. We re- 
mark that if condition 1 o is fulfilled, 
(2.4). 

then inequality (3.4) is equivalent to inequality 
Let us assume th& system (1.1) satisfies condition So 

4O and 6O. 
in addition to conditions 2O- 

We select a vector v~ Q and we define the sets 

V It,, x*, V, h, 61 = (vb (.) E Vb (t* + 6, .z* + 6h): u, (t) = u for - 00 -q t < t, + ?I} 

F It,, qc, L’, h, 61 = (f (t*, I*, u (.), 0 (.). 61: v (.) E v It,, 5*, v, h, 61. 
u (.) E ull CL*? I*, ~~C.1)) 

PO [t*, .I*, L’, h] = Ls F [t*, J*, v, IL, 61 
b-+0 

x ct*, z*) = {J i., t,, 
j-*. “(.I)) 

**,u(.)* UC.)): “(.I E v,tt*, 5*), U(.)E u,(t*: 

Theorem 3.2. Let conditions 2O-6' be fulfilled. For the value to coincide everywhere 
with the programmed maximin, it is sufficient that the inequality 

(3.5) 

v ct*> c+)E(-co, 6) x R” 

I’ E Q, h E F (t*. x*, 4, f E F, [t,, z*, u, hl 
s(.)5X((t*, “*),pEP(t*, h-f, z(.)) 

be fulfilled. 

Theorem 3.2 is a corollary of Theorem 3.1, since inequality (3.4) follows from (3.5). 

Example. Let the motions of two controlled objects be described by the equations 

5 = _ k (z’) I’ + u, y” = _ yy’ + c (3.6) 

k (s‘) = CL, z'>O; !%(2‘)= p> z'<O; a>fi>O, y>o, IuI<& 
1 r 1 :c h, 

Assume that the game termination instant 0 has been fixed. The quantity (2 (@ _ y (6))x is the 

payoff. The right-hand side of system (3.6) is not differentiable with respect to the phase 

variable, but does satisfy condition 6O. It can be shown that when the conditions 

h, > &> hllQ >.1,ly (3.7) 

are fulfilled, Theorem 3.2 is applicable to this problem, and, consequently, the game's value 

coincides everywhere with the programmed maximin. We note that inequalities of form (2.7) 

were first obtained in /7/, where a pursuit problem for system (3.6) with a= 6 was analyzed. 
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