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REGULAR PROGRAMMED MAXIMIN IN DIFFERENTIAL GAMES’

V.la. DZHAFAROV

Conditions are investigated for the coincidence of the programmed maximin and the
value of a positional differential game /1~ 5/. In connection with this the infin-
itesimal form of the stability property, derived in /6/, is used. It is shown that
under the fulfillment of the well-known regularity conditions /3—5/ the programmed
maximin function is directionally differentiable and the stability property holds
for it. The paper's main results are the necessary and sufficient condition for
the coincidence of the programmed maximin and the positional differential game's
value when the controlled system's right-hand side is differentiable with respect
to the phase variable, and a sufficient regularity condition when the controlled
system's right-hand side satisfies a Lipschitz condition in the phase variable.
These conditions generalize the previously known /3~ 5/ regularity conditions. The
paper abuts the investigations in /l1-10/.

1. Let the motion of a controlled system be described by the equation

r=f{tz,u, ), r=Rus PR, vsQ Z R? (1.1)
fi(—00,BIXR"XPxQ— R, |f(t,z,u, )| <1+ {z])

Here 0 is a fixed instant of time, P and @ are compacta, [ is a continuous function satisfy-
ing the inequality indicated, where [ -|| is the Euclidean norm, % is a constant. The payoff
is specified by the continuous function o=0(z{0))(z(-) is the system's realized motion). We
assumeoat first that the controlled system satisfies the following conditions.

17. The derivatives 4df,/dx; (i, j =1.2,..., n) exist and are continuous on (— o0, 0) X
R*x P X Q.

20. The equality (the prime denotes transposition)

min max §'f (f, x, %, v) = max mins'f (¢, r, u, )
ue P veQ v=Q usP
VY (t, 2) & (— o0, 8] - R", s = R"

is valid.

According to the formalization from /3/, the positional strategies of the first (payoff
minimizing) player and the second (payoff maximizing) player are identified with functions
defined on the position space (— o0, 0] X R"™ and taking values in compacta I’and Q, respectively.
For any initial position (f,, 7,) this game has a saddle point and the value ¢°({,, z,). The func-
tion c(¢, ) —~¢°(t, ) is called the differential game's potential. As was shown in /6/, for a
function ¢ (t, z) satisfying a Lipschitz condition to be the differential game's potential, it
is necessary and sufficient that it satisfy the boundary condition ¢ (8, ) = 0 () and that the
inequalities

sup he;g‘fx'w dc(t,z)fo(1,h) L0 (1.2)
inf sup d,c(t,z)0(1,h) =0

uEP heF(t, x, v)

F@,r,uy=co{f(t.z,u,v):ve=Q)

Fi,z,v)=cof{f(t, z,u,v): u =P}

be fulfilled for all (i, 2) & (— oo, 8) X R% Here 4 (t,2)/0 (1,h) and d,c (¢, z)/d (1, h) are the lo-
wer and upper derivatives of function ¢ (¢, ) in the direction (1, h). If the function c (¢, 2)
has a derivative in the direction (1, h) at the point (¢, z) e= (— oo, 8) X R™, then

ac(t, 2o, h) = d.c(t, 2)/0 (1, k) = dc (¢, z)lo (1, h)
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We introduce into consideration the programmed maximin guantity

*(t , == SU inf G,t 5 N U
C* (ter Ty) ﬂﬁ)epvu(r_;éuv(r( o Tt (hv()

w(-y:(—o0, 8] Pv(-):(— 00,8l >0Q

where U/ and V are sets of all measurable functions (programmed contrels), Tl Ty Ty W),
v() =z (t), t, <t<0O) is the solution of Eq.(l.1) with u == u (), v==v (t), satisfying the con-
dition =z (t,) = r,. It is known /3/ that the programmed maximin and the value are related by

C* (Lger Zy) S (B, ), Vit 2y) € (— ~,0) v R® {(1.3)
The next statement's validity can also be shown.

Statement. Let the function c {t, z) satisfy the Lipschitz condition, the boundary con-
dition ¢(8,z) =0 (z) and the first inequality in (1.2) for all (¢, z) & (— o.8) X B" and let

U, be a strategy extremal to the set

W = {(t, z) & [t,. 801 X B :c(t, 2) < ¢ (1. 74)}
Then the inequality
o (z(0]) oty 74
is fulfilled for any motion =z [t t,. 1., U]l generated by strategy U, from the position (f,. 1,).
Hence it follows that the quantity c{1,,z,) is related to the game's value ¢°(t,,z,) by
the inequality
elty, 1) 7 & (ty, Z4) (1.4)

Having taken the programmed maximin function c¢* ({, z) as ¢ (¢, 2) and used inequalities (1l.3) and
(L.4), we arrive at the next assertion.

Lemma 1.1. For the programmed maximin to coincide everywhere with the game's value, it
is necessary and sufficient that the function ¢*(t, 2) satisfy the first inequality in (1.2)
for all (I, z) & (— oo. 6) X R™.

We remark that when the well-known regularity conditions are fulfilled, the function
c¢* (t, z) proves to be differentiable in any direction (1, h).

We first look at the linear case. Let

ftzuy=4@0z+BRu+C@)r

where A (1), B (t) and ( {¢) are continuous matrix-valued functions of appropriate dimensions.
Here the sets P and (Q are assumed to be convex compacta, The payoff function o : R R is
convex and satisfies the Lipschitz condition

[0 (z) — o (z0) | < A 20 — 2D || (1.5)
(M = const, z) = A*, i =1, 2)

From convex analysis /11/ it is known that the function @ can be taken as

¢ (x) = max [l'z — o* ()] (1.6)
icL
o) ==sup Wz —o ()], L ={le R": 0% (I) << o0}
x=R”
Here o* is a convex function conjugate to ¢, defined by the equality indicated. Set L is
bounded on the strength of (1.5). Using (1.6), the Cauchy formula for solving the linear

equation, and a minimax theorem /12/ for the function e* (, Z), we can obtain the expression

3 [¢]
c* (L, ) == max il’CD(B,t)x +Sr1 (t,l)ydt + Sm(nl)dr—o*(l)) (.7
t t

(&L

where @ (t, T) is the fundamental matrix of solutions of the homogeneous equation
= A @)z, ry (t, 1) == min ['D (0, t) B (1) ul
usP
ry (4 1) = max [’ ® (6, 1) C (1) V]
T=0Q
By virtue of the theorem on the directional differentiability of the maximum function /13/,

it follows from (1.7) that the function c* (t, ) has a derivative in any directioen (1, k), which
is expressed by the formula

D) max (OO, Hh—r () ~ra(t ) — D@, 1) A (t) 2]
a1, h) (ELa(t, )
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where L,{i, 7) is the set of vectors from L, on which the naximum in {1.7} is reached. There~
fore, by Lemma 1.1, for the value to coincide everywhere with the programmed maximin, it is
necessary and sufficient that the inequality

maxmin max HO@HBHe L UDB. 00 0 —r{t i} — (1.8}
wWEG UEP ISL.ix)

?'2(5, 2)}<(} V(t,x§E{- v,é}} w R

be fulfilled, Inequality (1.8) is a well-known necessary and sufficient regularity condition
{see /4/)}. Here it has been obtained by computing the directional derivative of the program-
med maximin fuanction.

Let us now consider the nonlinear case. We assume the fulfillment of the following con~
ditions.

3°. The function o R". R is continuously differentiable.

40. The sets

Volle wa) o= frg - }czi"mfsix{i} B B Lo (O W ==c* . 1.1
ol 0, 00D = 00 (TS U0 (2 0, gy 200t (L 0EN =08 0@ 0,70 (1)

are nonempty for any (I, B,) £ (~— >, 8l x B* and v{)e V.

s€.  For any {t,, z,) = (— o0, 8} X A" and v {-} & V, (. 2,) the set Uy, z,,v{)} consists
of a single element.

Let {te, 4, ¥ {) v{}) e (— o0, 8 X A= x U % V. cConsider the motion z Ei} =z {t, ty, Z,.
), v{-) (fp <<t < 8). By L{f) we denote the derivative (the Jacobi matrix) df/dz computed at
point (¢, x (), « (), v (t)). We determine the solution s () == (s (t), t, <t < 8) of the adjoint system
St} = o L' (3 s{t), satisfying the condition ${8) = do {z (8))/dz. The value of function s{-) at
point f =1, is denoted sl z,, #{}. v {*}l. We note that a unigque vector slf,, z, u(-}, 2 ()]
corresponds to the collection {f,, x,, v {-}, #{-}}. Using well-known constructions {/3/,Chaptex
VI and VII) we can show that the function ¢*{i, 2} is differentiable in any direction (i, A}
at each point (t,,z,) e (— o0, 0) X A® and that this derivative is expressed

* 7
fi..}.’:'_'“'_t}i.r_ max [Fh—maxminsgf{t,, 1., 8,0 {1.9)
3{1, & * vk
(. & STt} »EQ uZP

S 2=l T B Lo (v (3 Vo (b, 24
sy S Uty 2y, v (-}

Here we omit the derivation of formula (1.9). ILemma 1.1 and formula {1.9) lead us to the
following assertion.

Theorem 1.1. Let conditions 1% 5% be fulfilled. Then the programmed maximin function
¢*(t, #) is differentiable in any direction (1,k)., Further, for the value to coincide every-
where with the programmed maximin, it is necessary and sufficient that the inequality

max min max  [s'h (. 2, S
v2Q hSP{,, 1y, 0} S8y, By}

V (g Ty) &= (= 00,0) X B, %ty Ty, 8) = ma{)}( mmsf(t*,x*,u )
& ugEp
be fulfilled.
The basic result contained in Theorem 1.1 was obtained in /5/. A new proof of this result
is proposed in a forthecoming publication.

2. Let us consider a necessary and sufficient condition for the coincidence of the
game's value and the programmed maximin when condition 5 is not fulfilled. We introduce some
notation. Let Y and Z be metric spaces, Y, Y, Yp=ct Y, , and the many-valued mapping F:
Yerr 22 pe specified. Following 714/, the symbol Ls, ., F{y} is used to denote the collection
of those and only those points 2, for which seguences e Y, %s=F{y) exist such that
Yy == Ygs 2~ 3, as k-»00. It can be shown that set Lay_,y F{y) is closed. Here and subsequ-
ently we assume the fulfillment of conditions 2% 4%, Let (ty- 7o) = (=00, 0) X B he= R
and & e2(0,8 — t,). Assume

Al oo b D=l 2 EN =XV b, (2.1}
x* +Oh) ¥ (8, 2 Lo (@, 1, + 8. zy Ok, u (4},
(*)) o (z (0, byr Ty w(-). V() )}
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Lemma 2.1. For any (tyy Ty) E(—00,8) X R*" he= R®  and 6 & (U, 8 — ;) a pair (u (-},
v, ((NeEA (. 7, b 8) exists such that

c* (t, z, - Oh) — c* (t,, z).—_— [
G(x(0t+614—6hu( N —
Gz (0, by Tys 1y (), vy (D)

Proof. we find u() = Vo lt. -+ 8, z, + 6h) and we select a constant vector v, <= (. We set
i (8) =[o, fOr o <t <t 46, vglt) for t, +6< t<0]. Let u, () = Uy (tes o 0o (4)). It can be shown that
(6 () w1 (-)) = A¢ (tyr 4o by ). Analogously it can be shown that a pair (u,(:), () = U X V exists
for which
Kt 0 T FOR) —c* Uy 2N 25 (T (0, G40, 2y + 0wy (), 03 () — 5 (B (0t Tyn uy () 05 ()
Let (ug (8, v (8) = [{u1(8), o1 ()] for — oo <t <1, (ug{t), v, () for 1 < t< 6). Consider the function
@lT) = c* (ty + 8 2, + 8h) — * (14, 7)) - 0 (2 (0, ta + 8, 2y = 6k, ug{ ). v (D) + 0 (x (0, ty, x4, ug (-}, vy ().
It is continuous and satisfies the inequalities ¢(t,) >0, ¢(8) < 0. Consequently, there exists
Ty €4, 8] such that g(1) =0, i.e., the pair (u, (), v () = (u,(-). ve (-)) satisfies equality (2.2).
Let (u(-),v (")) & Ux V and the vector sit,, z,, u (-),v (-)] be defined as in Sect.l. We set
b6
Felto 2 u ()0 (181 =8 § ftez,u.0@) at (2.3)
i .

B(t*, Ty» h, §) = {(5[tys Ty u (), U(-)],f* [Exs Zor Ut (Do) 5]) =
R X R (u (), v () EA(ty, 24, 1, 8))

Bo(lg, Ty, h) == Lsg_..0B (tys Ty, b, )

Bo(ty, Te, Ry =P, V (L Xy RY = (—00,0) R* x R"

Theorem 2.1. Let conditions 1°— 4° be fulfilled. For the value ¢ (4. T4) to coincide
everywhere with the programmed maximin c* (i,, z,), it is necessary and sufficient that the in-
equality
sup infmins’(h—-—f*) <0, V(e z)=(—o0,0) x R? (2.4)

h

v

ve 0, heF(t*,x*, v). (8, fy) & By (ty Ty, h)
be fulfilled.

Proof. Sufficiency. Suppose that inequality (2.4) is satisfied. Then for every
vesQ and & >0 there exist hy &= F (L4, T4 V) and (s, f4) €= By (t4, T4, hy) such that

s’ (e — i) <& (2.5)

By the definition of By(ty,Zs k) we can choose 8 — 40, (s, fx) EB(ty, Tyr iy 8), (e () 0k (NS Aty

Zyo by, 8) such that (sy, fi)— (54 f4) and 45
w0,

8= S (o Tyo w1 () vk ()] =8’ S F{tar Ty ux (L), v (1)) dE (2.6)
i

¥ (ty + Ony Ty - Bhy) — ¥ (L 2) SO (2B, 1y + By, (2.7
Ty + Sk g () o () — 0 (20, by Ty un (D 0 ()

Using variational equations, the right-~hand side of (2.7) can be estimated by the quantity
sk (hy — fi) 8 + 0 (8;). Because of (2.5)

d_c* (ty, . -
__0(%*’1_:;.)— < lim 87 [e* (1) + O Ty + By — €* (B, TR <
[

Him & (g — fi) = s (e — f) <

Since £ >0 and ve& Q are arbitrary and hy & F (t,, Z4, V), by Lemma 1.1 the value coincides every-
where with the programmed maximin.
Necessity. By Lemma 1.1, for every v =@ and &> 0 there exist hy €5 F (1, 74, ).
8, — + 0 such that
C*(ty 4 By, 2y + Bihy) — c* (b4, 1) < 66, (2.8)

On the strength of Lemma 2.1 we can select a pair (uy (-), vy (+)) & A (te, T4, Ry 6,) satisfying
(2.2). Because of (2.8) we obtain
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O (2 (0, ty -+ By T + OSkhyy Uk (N0 () — 9 (28, L 2y wi (), vk () T2 &y
The left-hand side of (2.8) equals s (hy — fi) 6 + 0 (). where s and f, are defined by (2.6).
Therefore
si’ (hy — fx) 8 << O (8i) + 26,
Consequently

min s'they —fe) <
(3, fa)EButa, %x, ha)

and, hence, (2.4) is fulfilled. The theorem is proved.

If condition 2° is not fulfilled, then the positional differential game has an equili-
brium situation in other classes of positional strategies of both players, and a correspond-
ing programmed construction and a corresponding definition of programmed maximin are known for
each of these types of differential games /3,5/. Using these definitions, we can construct
the set B, and obtain analogs of Theorems 1.1 and 2.1. We remark as well that Theorems 1.1
and 2.1 remain valid, with appropriate modifications, in the case the function ¢ is not dif-
ferentiable, but is given as

o ()= min ¢ (z, m)
meM
where M is a compactum, the function ¢ is continuous in all variables and is continuously dif-
ferentiable in z, as well as in the case condition 4  is not fulfilled.

3. We consider the case when function f satisfies condition 2° and the one following:
6. f(t, z,u, V) =fi(t,z) + fo(t, u, V), (¢, z, 4, V) =(—00, 8] X R* X P X Q
[t 2®) — f, (1, 2 | KA G | 22 — 20, (¢, 20) 6, (i=1,2)

where G1is any bounded region in (— oo, 8] X R", A(G) is the Lipschitz constant. Following /15/,
we consider the many-valued mapping (¢, z, P)— K (t, z, p), where for any (¢, z, p) &= (— o0, 0] X
R® X R* we set

K(t, z.p)= 6#1;8”4: {([i(tiy = 8p) — fr(t, )1 671 (3.1)

We note that here, in contrast to /15/ wherein y = x in definition (3.1), we require that
point y vary in a neighborhood of point =z.

Let 2(-): [ty, 01 > R™ be a continuous function and p, & R™. By the symbol P (t,, Pg T (‘)
we denote the collection of points p* & R" for each of which a solution p{(-): [t4, 8] > R* of
the differential inclusion

P Kt =), p(t) (3.2)

exists satisfying the conditions p(t,) = p,, p(8) = p*. We note that F (f,, ps, z(-)) = 7L
Assume that (fy, Zg) S={(— oo, O X R*, &> +0,(u (o (-De=U XV and 7 = R* have been chosen.
Consider the equation

(t) = fi(t 2 (8) + fo (bt we (8), v (1) (3.3)
A solution of Eq.(3.3), satisfying the condition zx{{,) = z,, is denoted =z, (t) (¢, <t <M. By
U (1) (L, <t < B) we denote the solution of the same Eq.(3.3), satisfying the condition yy (2, +
Ox) = 24 + 8kt -+ 0 (8;). Let
ty -0,
}im 8¢t S Fllgr T i (0, U (D) €t = foy W 2y (1) == 2 (1)
;00 fe k—+x
Vi = by, 8], Az (t) = yx (t) — 24 (1)
Lemma 3.1. All partial limits of the sequence Az, (8)8,"! are contained in set P (t,,
h —fy, x()). Lemma 3.1 is proved on the basis of a construction in /15/. We set

C(t*, Tyes h7 6) = {('t(v t*v Ly u’(’)' U('))v f* [t*, Tgs u(')v
v (), 8] (), v() EA (L. x4, b, B))

Co(te, T4, )= bL-fo C(ty, Ty, b, 8)

where the vector f, and the set A have been defined by (2.4) and (2.1).

Theorem 3.1. Let conditions 2°— 4° and 6° be fulfilled. For the value of the posi-

tional differential game to coincide everywhere with the programmed maximin, it is sufficient
that the inequality
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sup inf max[ﬁs—%&]‘pg() (
v (h,x() fa) P z

V(ty, z4) S (— o0, 8) x R*
VEQ, h& Fty, 4, V), (2(:), f&) E Colty, Iy, n)
pEP(l*, h—f*, x('))

be fulfilled.
Theorem 3.1 is proved by the scheme used to prove Theorem 2.1, using Lemma 3.1.

We re-
mark that if condition 1° is fulfilled, then inequality (3.4) 1s equivalent to inequality
(2 4). Let us assume thaf system (1.1) satisfies condition 5° in addition to conditions 2°—

4° ana &° We select a vector v =@ and we define the sets

Vity, 24, v, b, 8] = (g () € Vo (b4 + 8, 24 + 8R): v, () = v for — o< t < t, + 8}

Flty, 2e, v, B 81 = {1 (ty, 2, u(4), v(-), 8k v () = V iy, z4, v, k, 6].
u(-) & Uy (ty, xp, v(-))}

Folty, v, h]= Ls Flt,, z,,v,k, 8}
8—-+0

X(l*, .Z*) = {J(', Ly, I*au(')v v U() = Vo (t*, I*), u(-)E UO (ts>
Zy. V(N

Theorem 3.2. Let conditions 2°—6° be fulfilled. For the value to coincide everywhere
with the programmed maximin, it is sufficient that the inequality

sup inf sup [w.]lpgo (3.5)
t o (hy 1) (x(), p) x

Vity, z,) &(—o00, 8 X R
v = Q. he& Fty, 14, V), f& Fy lty, 24, v, k]
() S X (e, 2, pEP(ty, R —f, 2(-))

be fulfilled.
Theorem 3.2 is a corollary of Theorem 3.1, since inequality (3.4) follows from (3.5).

Example. Let the motions of two controlled objects be described by the equations

= k(zy A u y T = —yy (3.6)
k(z)=a, 2220, k(z) =8, <0 a>§>0, >0, |ul|<h
[el< A,

Assume that the game termination instant 6 has been fixed. The quantity (z(8) — y(8)? 1is the
payoff. The right-hand side of system (3.6) is not differentiable with respect to the phase
variable, but does satisfy condition 6 . It can be shown that when the conditions

> Ay Mo > Ay (3.7)

are fulfilled, Theorem 3.2 is applicable to this problem, and, consequently, the game's value
coincides everywhere with the programmed maximin. We note that inequalities of form (2.7)
were first obtained in /7/, where a pursuit problem for system (3.6) with e¢=8 was analyzed.
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